Electron Scattering on the Hoyle State and Carbon Production in Stars*
Maksym Chernykh

M. Chernykh1, H.P. Blok2, H. Feldmeier3, T. Neff3, P. von Neumann-Cosel1, and A. Richter1

1 Institut für Kernphysik, Technische Universität Darmstadt, Germany
2 Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
3 Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany

*Supported by the DFG within SFB 634
Motivation: Nuclear Structure

- The Hoyle state is a prototype of α-cluster states in light nuclei

- Some α-cluster models predict the Hoyle state to consist of a dilute gas of weakly interacting α particles with properties of a Bose-Einstein Condensate (BEC)

- Comparison of high-precision electron scattering data with predictions of FMD and α-cluster models

 Hoyle state cannot be understood as a true BEC

M. Chernykh et al., PRL 98 (2007) 032501
Motivation: Astrophysics

Triple alpha reaction rate

\[r_{3\alpha} \propto \Gamma_{\text{rad}} \exp \left(-\frac{Q_{3\alpha}}{kT} \right) \]

\[\Gamma_{\text{rad}} = \Gamma_\gamma + \Gamma_\pi = \frac{\Gamma_\gamma}{\Gamma} \cdot \frac{\Gamma_\pi}{\Gamma} \]

- Reaction rate with accuracy ±6% needed
- Total uncertainty \(\Delta r_{3\alpha}/r_{3\alpha} = \pm 12\% \) presently

S.M. Austin, NPA 758 (2005) 375c
Transition Form Factor to the Hoyle State

Extrapolation to zero momentum transfer

Fourier-Bessel analysis

Low-q data needed!

H. Crannell, data compilation (2005)
Low-q Extrapolation

\[\sqrt{4\pi B(C^0, q)/q^2} = \frac{1}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \ldots \right] \]

● **ME** = 5.37(22) fm², **R_{tr}** = 4.24(30) fm

● Large uncertainty because of narrow momentum transfer region

Low-q Extrapolation

\[ME = 5.37(7) \text{ fm}^2, \quad R_{tr} = 4.30(12) \text{ fm} \]
Fourier-Bessel Analysis

- Transition form factor is the Fourier-Bessel transform of the transition charge density

\[F'(q) = 4\pi \int_0^\infty \rho_{tr}(r) j_0(qr) r^2 \, dr \]

\[\rho_{tr}(r) = \begin{cases}
\sum_{\mu=1}^{\infty} a_{\mu} j_0(q_{\mu}r) & \text{for } r < R_c \\
0 & \text{for } r \geq R_c
\end{cases} \]

with

\[q_{\mu} = \frac{\mu \pi}{R_c} \]

- Data should be measured over a broad momentum transfer range
Fourier-Bessel Analysis

\[q = 0.2 - 3.1 \text{ fm}^{-1} \]

\[ME = 5.55(5) \text{ fm}^2 \]
Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Analysis</th>
<th>Pair width</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>PWBA</td>
<td></td>
<td>Crannell et al.</td>
</tr>
<tr>
<td>1970</td>
<td>PWBA</td>
<td></td>
<td>Strehl</td>
</tr>
<tr>
<td>1970</td>
<td>Old average</td>
<td></td>
<td>Ajzenberg-Selove</td>
</tr>
<tr>
<td>2005</td>
<td>Fourier-Bessel</td>
<td></td>
<td>Crannell et al.</td>
</tr>
<tr>
<td>2008</td>
<td>PWBA</td>
<td></td>
<td>Present work</td>
</tr>
<tr>
<td>2008</td>
<td>Fourier-Bessel</td>
<td></td>
<td>Present work</td>
</tr>
<tr>
<td>2008</td>
<td>New average</td>
<td></td>
<td>Present work</td>
</tr>
</tbody>
</table>

\[\Gamma_\pi = 62.2(10) \ \mu\text{eV} \]

\[\text{Total uncertainty } \Delta r_{3\alpha}/r_{3\alpha} = \pm 10\% \]

\[\text{Only } \Gamma_\pi'/\Gamma' \text{ needs still to be improved now} \]
Outlook

Theory systematically overpredicts experiment
Outlook

\[^{12}\text{C}: \, 0^+_3 \text{ and } 2^+_2 \text{ states} \]

\[^{16}\text{O}: \, 6\text{th excited } 0^+ \text{ state at } 15.1 \text{ MeV is the "Hoyle" state } \rightarrow ^{16}\text{O}(e,e'\alpha) \]